Γ-convergence and Sobolev norms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Γ-convergence, Sobolev norms, and BV functions

We prove that the family of functionals (Iδ) defined by Iδ(g) = ∫∫ RN×RN |g(x)−g(y)|>δ δ |x− y|N+p dx dy, ∀ g ∈ L(R ), for p ≥ 1 and δ > 0, Γ-converges in L(R ), as δ goes to 0, when p ≥ 1. Hereafter | | denotes the Euclidean norm of R . We also introduce a characterization for BV functions which has some advantages in comparison with the classic one based on the notion of essential variation o...

متن کامل

Partial Differential Equations Γ -convergence and Sobolev norms

We study a Γ -convergence problem related to a new characterization of Sobolev spaces W1,p(RN) (p > 1) established in H.-M. Nguyen [H.-M. Nguyen, Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689–720] and J. Bourgain and H.-M. Nguyen [J. Bourgain, H.-M. Nguyen, A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 75–80]. We can also hand...

متن کامل

Sobolev Norms of Automorphic Functionals

It is well known that Frobenius reciprocity is one of the central tools in the representation theory. In this paper, we discuss Frobenius reciprocity in the theory of automorphic functions. This Frobenius reciprocity was discovered by Gel’fand, Fomin, and PiatetskiShapiro in the 1960s as the basis of their interpretation of the classical theory of automorphic functions in terms of the represent...

متن کامل

Wavelet characterization of Sobolev norms∗

Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp norms of the function itself as well as its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, thus a Banach space. We begin with the classical definition of Sobolev spaces. Definition 1. Let k be a nonnegative integer and let 1 < p < ∞ ...

متن کامل

Weak logarithmic Sobolev inequalities and entropic convergence

In this paper we introduce and study a weakened form of logarithmic Sobolev inequalities in connection with various others functional inequalities (weak Poincaré inequalities, general Beckner inequalities...). We also discuss the quantitative behaviour of relative entropy along a symmetric diffusion semi-group. In particular, we exhibit an example where Poincaré inequality can not be used for d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus Mathematique

سال: 2007

ISSN: 1631-073X

DOI: 10.1016/j.crma.2007.11.005